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We describe an extension of higher order Godunov methods to general systems of hyper- 
bolic conservation laws. This extension allow the method to be applied to problems that are 
not strictly hyperbolic and exhibit local linear degeneracies in the wave tields. The method 
constructs an approximation of the Riemann problem from local wave information. A 
generalization of the Engquist-Osher flux for systems is then used to compute a numerical 
flux based on this approximation. This numerical flux replaces the Godunov numerical flux 
in the algorithm, thereby eliminating the need for a global Riemann problem solution. The 
additional modifications to the Godunov methodology that are needed to treat loss of strict 
hyperbolicity are described in detail. The method is applied to some simple model problems 
for which the global analytic structure is known. The method is also applied to the black-oil 
model for multiphase flow in petroleum reservoirs. h 1989 Academic Press, Inc. 

1. INTRODUCTL~N 

Over the last 15 years, there has been an extensive effort in the development of 
conservative finite difference methods for computing discontinuous solutions to 
hyperbolic systems of conservation laws. The goal of this effort has been to develop 
viable numerical algorithms to solve problems in several specific applications, in 
particular, compressible fluid flow, plasma physics, and combustion. For reviews of 
various aspects of this work, see [l-3]. As a result of this effort, a set of heuristics 
for the design of “high resolution” methods for hyperbolic conservation laws has 
emerged. They can be summarized as follows. 

(1) The numerical flux should consist of a hybridization of a flux for a first 
order method, and a flux for a higher order method. The first order method should 
be sufficiently dissipative so that, if it were used by itself, the numerical solution 
would converge to a weak solution satisfying appropriate entropy conditions. The 
rule by which the two fluxes are hybridized, known as the limiter, should include 
a sufficient amount of low-order flux at discontinuities and underresolved gradients 
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to suppress oscillations and guarantee satisfaction of entropy conditions, while 
choosing the high order flux at almost all points where the solution is smooth. 

(2) The underlying high order method should have low phase errors, either 
through the use of high order ( 24th) spatial differencing or by using upstream- 
centered differencing [4]. 

(3) Additional dissipation is introduced as required in the neighborhood of 
strongly nonlinear discontinuities. 

The above heuristics were arrived at by a combination of analysis of model 
problems, physical intuition, and numerical experiment. However, all of this work 
assumed, either explicitly or implicitly, two properties of the systems under 
consideration. First, the system should be strictly hyperbolic, with the linearized 
coefficient matrix possessing a complete set of linearly independent eigenvectors 
which were globally defined smooth functions of the dependent variables. Second, 
the system should satisfy the conditions set forth by Lax [S]; namely, each mode 
of wave propagation should be either genuinely nonlinear or linearly degenerate. 
Thus, the derivative of each eigenvalue along integral curves of the associated right 
eigenvector either never vanishes or is identically zero. 

The extension of the above methodology to systems that are not strictly hyper- 
bolic or violate the Lax conditions by having local linear degeneracies requires, at 
the very least, a careful reconsideration of the problem. The analytical information 
on which the methodology depends is either more complicated or simply unknown 
for more general systems of conservation laws. For example, the only schemes for 
nonlinear nonconvex scalar conservation laws in one space dimension that are 
known to converge to weak solutions satisfying appropriate entropy conditions are 
monotone schemes [6], which are only first-order accurate for smooth solutions. 
This is in contrast to the situation for convex scalar laws where it is possible to con- 
struct schemes which are second-order accurate for smooth solutions and converge 
to weak solutions satisfying the entropy condition. More generally, determining the 
correct entropy-satisfying discontinuities is much more complex for modes with 
local linear degeneracies, since it involves knowing the behavior of the wave speed 
at all points along the wave curve connecting the pre-wave and post-wave states. 
To make the same determination for genuinely nonlinear modes, the value of the 
wave speed is needed only at the pre-wave and post-wave states (see Liu [7]). 
Finally, the analytical structure of weak solutions is, in general, unknown in the 
neighborhood of a point where there is a loss of strict hyperbolicity. (For examples 
of the additional complexity exhibited by non-strictly hyperbolic systems, the reader 
can refer to Keylitz and Kranzer [S] and Schaeffer and Shearer [9].) 

In this paper, we extend a particular version of the high resolution methodology, 
viz., the higher order Godunov methods, to the case of general systems of hyper- 
bolic conservation laws. We assume that in phase space the regions of local linear 
degeneracy or where strict hyperbolicity fail are codimension > 1, a condition 
which is satisfied by the applications that have been analyzed to date. In addition, 
it has been observed in specific model problems that the regions in space-time 
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where these conditions hold and the solution is not locally a constant are also of 
codimension 2 1. Our strategy, then, is to detect those points in a calculation where 
the solution exhibits local linear degeneracy or non-strict hyperbolicity. At ail other 
points, we use a variation on the standard Godunov methodology. At the excep- 
tional points, the Godunov methodology is modified to provide a scheme that is 
stable and has sufficient dissipation so that an appropriate entropy condition is 
satisfied. The use of Godunov-type methodology is a particularly natural choice 
here, since the same characteristic information can be used both to construct the 
fluxes and to detect local linear degeneracy and non-strict hyperbolicity. 

In the Godunov approach, the numerical fluxes are determined by computing a 
left and a right state at a cell edge, solving the Riemann problem for those two 
states and evaluating the flux along the appropriate ray. Even for applications in 
which the Riemann problem solutions are well understood analytically, approxima- 
tions are often introduced for reasons of computational efficiency. See, for example, 
Roe [lo] and Colella and Glaz [ 111. In the present case, it is essential to introduce 
approximations to the Riemann problem solution, since the exact solutions are 
either unknown or prohibitively expensive to compute. The approximation we use 
here consists of two distinct parts. The first is a local model for the solution of the 
Riemann problem for strictly hyperbolic systems. Given an approximate solution in 
phase space (i.e., a collection of jumps, one for each family of waves which defines 
the jump across the wave of that family), we construct an interpolated wave speed 
along the wave paths connecting successive states. We use this local model to 
calculate an appropriate generalization for systems of the Engquist-Osher flux 
[ 12, 131 for scalar conservation laws. The extension we use is similar to that given 
by Osher and Solomon [14], but it does not require exact knowledge of the 
integral curves of the right eigenlields in phase space. The advantage of the 
Engquist-Osher approach is that it yields a flux formula which is at least as 
dissipative as the flux evaluated at the solution to the Riemann problem, with 
additional dissipation introduced only at transonic waves. At the same time, it is 
much less expensive than the corresponding Riemann-problem flux calculation, 
since it does not require determining which discontinuities satisfy the entropy 
condition. The second part of the algorithm consists of the modifications that are 
required when waves speeds coalesce and the system is no longer stricly hyperbolic. 
In particular, we discuss how the difficulties associated with coalescing wave speeds 
manifest themselves and how they can be detected. Then we describe the modifica- 
tion to the algorithm when loss of strict hyperbolicity is detected. 

A review of the Engquist-Osher algorithm and a description of our numerical 
flux computation are presented in Section 2. The loss of strict hyperbolicity and the 
presence of local linear degeneracies necessitate additional modification to the 
higher order Godunov procedure; these are described in Section 3. The last two 
sections discuss numerical examples. The first of these discusses relatively simple 
model problems for which exact solutions are known. The latter describes an 
application of this methodology to a model for multiphase flow in porous media 
that includes mass transfer and compressibility effects. 
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2. NUMERICAL FLUX COMPUTATION 

In this section we develop an approximate Riemann problem solver to compute 
a Godunov-type flux for systems that exhibit local linear degeneracies and loss of 
strict hyperbolicity. More precisely, we consider the system of conservation laws 

U, + F.y = 0, (2.1) 

where U is a vector of length K and F is a vector-valued function of U. We consider 
difference schemes of the form 

(2.2) 

where U; approximates the average value of the solution in cell Aj centered at x, 
at time t” and F,, ,,* is the numerical flux. For the first-order Godunov method 
[ 151, the numerical flux is FG( UL, UR), which is defined to be the flux F evaluated 
at the state that propagates along the ray x/t = 0 in the Riemann problem solution 
for (2.1) with left state UL and right state UR. We note that the Godunov scheme 
only requires the flux evaluated at the state propagating with zero speed in the 
Riemann problem solution of the Riemann problem. For this reason our discussion 
focuses on the computation of this flux, not on obtaining a complete solution of the 
Riemann problem. 

Scalar Conversation Laws 

To fix ideas, we describe the basic algorithm for the scalar conservation law 

ut +f(uL = 0. 

The method is based on the Engquist-Osher scheme for which the numerical flux 
is defined by an integral of the wave speed a(u) =f’(u): 

fEO(UL, UR)=f(U*)- jUy max(a(s), 0) ds + S,:: min(a(s), 0) ds, (2.3) 

for any reference state u*. The result is, of course, independent of u*. The numerical 
flux given by (2.3) can be viewed as the flux at some reference state U* plus a 
correction term given by the integral. Furthermore, the integral term contributes a 
dissipation term (possibly of zero magnitude) to the numerical flux. It is precisely 
this notion that Osher [6] exploits to show that the flux (2.3) can be written as the 
Godunov numerical flux plus a dissipation term. Furthermore, for convex flux 
functions, this dissipation is nonzero only for two states that describe a transonic 
compression; i.e., f '( uL) > 0 and f'(uR) < 0. This method for modifying the 
Godunov flux with some extra dissipation at transonic discontinuities provides the 
basis for the approximate Riemann problem solution described below. 

We will approximate a using only values of first and second derivatives off at 
uL at ~4~. The simplest approximation would be to linearly interpolate between 
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a(uL) and a(~,); however, the linear approximation, which corresponds to a 
quadratic approximation to the flux, is unable to represent inflection points in f: 
For this reason we approximate a on the interval between uL and uR by its Hermite 
cubic interpolant ii. The cubic provides a local quartic model of the flux which can 
contain two inflection points. Before evaluating (2.3), we introduce an additional 
simplification to the approximation. We replace the cubic approximation ii by a 
piecewise linear approximation 5 in order to avoid finding zeroes of a cubic in the 
algorithm. First, we compute the extrema of Z The piecewise linear approximation 
5 is then defined to be the piecewise linear interpolant of ii at uL, uR and the 
extrema. 

We note that when the integrands in (2.3) are approximated, the flux is no longer 
independent of the reference state u *. A variety of possible approximations to u* 
are possible. We have used a simple upwind procedure based on the sign of 

5 JbL) -f(u”) - UL-UR 

We take u* = uL if 5 > 0; otherwise we take u* = up-. (This type of secant condition 
was used in a more general form by Murman and Cole [16] to choose an upwind 
state for the transonic small-disturbance equation.) Of course, more sophisticated 
approaches for determining the reference state can easily be incorporated into the 
algorithm. 

Using the above definition of the reference state, we evaluate (2.3) with a 
approximated by LT. Thus, the approximate flux for scalar conservation laws is 

f”(uL, uR) =f(u*) - juy max(ti(s), 0) ds + j:: min(G(s), 0) ds. (2.4) 

We note that this form ensures that the numerical flux is the reference flux plus a 
dissipation term. In particular, 

f”=f(u*)- [lx+p+a-(l -/3)](tP-uL), (2.5) 

where 

1 
s 

l4R 
a- = 

(UR-U*) u* 
Imin(a(s), 0)l & 

and 
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Both of the terms c( + and CI- are nonnegative and 0 d /? Q 1 for u* between uL and 
uR; thus, the additional term represents a dissipation (possibly of zero magnitude). 

The motivaticn for using a local model comes from our experience in the case of 
a convex flux. For a convex flux, the only case for which fEo #f(u*) is if 
a(~“) a(~“) < 0. For that case, it suffices to approximate a(u) as a linear function 
of u in (2.4). The dissipative term so introduced, while not identical to that 
implicitly introduced by the exact Engquist-Osher flux, is nonzero for ail cases 
where the latter is nonzero and sufficient to ensure that any discontinuities computed 
satisfy the appropriate entropy condition. For the case of a flux with isolated 
extrema in a(u), the appropriate analog of a local linear representation of a(u) is 
to represent a as a polynomial of degree > 2, which is sufficient to represent a single 
isolated extremum in a. (We use a cubic, since we evaluate du/du at both the left and 
the right state.) Thus if aR - uL is sufficiently small, our approximate flux will add 
tof(u*) a dissipation which is nonzero whenever the analogous dissipation forfEo 
is nonzero. In practice, we have found that the procedure given here produces 
discontinuities satisfying the appropriate entropy conditions for large amplitude 
jumps, provided that we add a suitable quadratic viscosity to the flux, i.e., 
f” +f” + q(uL - uR), q = O(uL - u”). T o understand why this should be the case, let 
6 be the maximum jump for which our local model procedures a flux which is 
sufficiently close to that given by the Engquist-Osher flux in the sense described 
above, and assume that r] z C IuL- uR1/6. Then there are two cases. When the 
magnitude of the jump is less than 6, then the principal dissipation mechanism is 
that of the Engquist-Osher flux. In the case when the magnitude of the jump is 
much larger than delta, then the explicit artificial viscosity acts like a linear viscous 
term. In both cases, the dissipation is sufficient to enforce the entropy condition. 
Furthermore, the fact that the explicit viscosity is quadratic in the jump will enable 
us extend the overall approach to be second order accurate for smooth solutions. 

Systems 

Now we generalize the numerical flux approximation (2.4) to stricly hyperbolic 
systems of equations. Our approximation procedure for systems breaks the flux 
computation into two distinct pieces. First, we construct a path from UL to UR that 
approximates the phase-space solution of the Riemann problem, The phase-space 
solution can be constructed without regard to physical (x, t) space considerations. 
An approximation to the wave speeds along the phase-space path establishes a 
physical-space representation of the Riemann-problem solution and provides the 
information needed to compute the flux using a system analog of (2.4). 

To make precise the notion of a phase space solution we must first describe the 
structure of the Riemann problem for strictly hyperbolic conservation laws. (For a 
more detailed description see Lax [17]). For such a system the solution of the 
Riemann problem consists of up to K distinct waves progressing from UL to UR 
separated by K- 1 intermediate states. We will refer to the slowest (minimum 
velocity) wave as a l-wave and the fastest (maximum velocity) wave as an K-wave, 
etc. The solution of the Riemann problem is constructed in phase space by 
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following “wave curves.” For any state U, we define the kth wave curve through U 
to be the set of all states that can be connected to U with a k-wave. The Riemann 
problem solution in phase space is thus a collection of state transitions 

uL=uo’ul+ ... -dJ,_,4JK=UR, 

where the transition from Uk ~ 1 to Uk occurs along some arc r, of the kth wave 
curve. 

In the limit of small amplitude jumps 

where rk is the right eigenvector of DF(UL) corresponding to the kth eigenvalue 
(with ordering 2, ~1, < . . . <A,,,). The amplitude elk is, to leading order, the 
coefficient of the expansion of UR - UL in terms of the rk, 

Analogously, in the general case of finite amplitude jumps, the phase-space solution 
of the Riemann problem takes the form 

UR-UL= i akrk+O(IUR-UL12). 
k=l 

K 

uR-uL= c C(kRk, 

k=l 

where R, is a “generalized” eigenvector that represents the net change along r,, 
normalized to be of unit length. 

From this analytic perspective the approximate phase-space solution is a decom- 
position of the jump from UL to UR into K jumps corresponding to each of the 
wave modes. To approximate this decomposition we need a set of linearly 
independent Rk along with associated approximations to the wave curves i=k that 
approximate the r,. If we expand UR - UL in terms of the 1,‘s we obtain 

UR-uL= i fi,i?k, (2.6) 
k=l 

where elk approximates ak. For the computations reported here, we have used a 
particularly simple approximate phase space solution. In particular, we let U’= 
l/2( UL + UR). We then let i?, = rk(Ue), the kth right eigenvector of DF at U’ 
corresponding to wave speed A;. (Because of the subsequent approximations, the 
path rk is not explicitly needed in the algorithm. For convenience, we will, 
however, define the path to be the line segment connecting uk- I and ok.) For 
other problem areas having “stronger” nonlinearities such as elastic-plastic flow or 
high-speed multiphase flow a more elaborate approach may be merited. In any 
case, the flux computation is independent of the technique used to obtain the phase- 
space solution. 
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We now turn to the problem of computing a numerical flux. Our goal is to 
develop an analog of Eq. (2.4) for systems. As was the case for scalars, the numeri- 
cal flux will be written as the flux at some reference state plus an integral correction 
term. Following Harten and Lax [18] we define a mean speed 

(ff= (F(UL)-F(UR)).(UL- U”) 
IIUL- URl12 . 

We then define the reference state U* = UL if c? b 0; otherwise U* = UR. This 
definition has proven adequate for porous media flow. In some applications, one of 
the intermediate states 

Q=uL+ i: ClkRk 
k=l 

may be a more appropriate choice. If intermediate states are used for computing the 
reference flux, some caution is required when the system exhibits loss of strict 
hyperbolicity; see discussion in the next subsection. For clarity of exposition we will 
assume that the reference state is UL for the remainder of the section. We also 
assume that the R,‘s have been oriented so that the ak are positive. 

For the system case, there are K contributions to the integral term corresponding 
to each term in the expansion (2.6). The kth term in the expansion corresponds to 
a k wave. Thus, a natural analog of (2.3) for systems would be 

F(UL)+ .f 1 DFTkXkdS: 
k=, Fk 

(2.7) 

where xk is the characteristic function of the set {U: dk( U) < 0}, rk is the tangent 
to rk, and s parametrizes r,. If we substitute the approximate phase-space solution 
for the true phase-space solution in (2.7) we obtain 

F(UL )+ k:l Lk DF5, Xk ds, (2.8) 

where fk is the tangent to Fk. 
To compute the flux we want to develop an approximation to (2.8). Some care 

must be taken in constructing the approximation so that the correction term has a 
dissipative form. The first step in this process is to construct an approximation to 
the k th wave speed along the line segment Fk from uk- I to uk. The procedure is 
analogous to the scalar procedure. We let A,L and JF denote the eigenvalues at UL 
and UR arranged in increasing order. At UL and UR we also compute the structure 
coefficients defined as 

KkLiR - (&,jlk)L’R ’ i?,. 

%.X2,2-9 
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We then use I& and IC& to provide the second derivative information needed to 
compute the cubic approximation xk of I, along rk. The approximation 1, is then 
modified, as before, to obtain a piecewise linear approximation Xk. We note that by 
using wave speeds at UL and UR to model the wave speed along Tk we avoid 
additional characteristic analyses and potential problems arising from errors in the 
phase-space solution. Also, this approximation is correct to second order in the 
jump so that the accuracy required for overall second-order accuracy of the method 
is preserved. 

The next step in the process is to approximate DF ik in terms of the approximate 
wave speed. It is known (see Lax [S] and Liu [7]) that along the wave curves 

DFT, = l,,r, + O(UR - UL)‘. 

This leads to the approximation of (2.8) by 

(2.9) 

Equation (2.9) is the approximation flux formula (when the reference state is UL). 
A system analog of (2.5) shows that the integral terms in (2.9) add a nonnegative 
dissipation to each of the characteristic modes in the expansion of UR - UL. 

Loss of Strict Hyperholicity 

In this subsection we examine the necessary modifications to the approximate 
Riemann problem solution described earlier in this section when there is a loss of 
strict hyperbolicity. There are two possibilities when wave speeds coalesce. Either 
the Jacobian of the flux DF can be diagonalized or it will contain a nontrivial 
Jordan block. The procedures outlined below are designed with the eigenvector 
deficiency case in mind as this is the case in which the construction above clearly 
breaks down. We will, in fact, describe the algorithm in terms of the detection of 
eigenvector deficiencies and their treatment. However, we do not distinguish 
between these two possible cases in the algorithm. This is essentially a safety precaution 
that avoids potential difficulties associated with inconsistencies in the definition of 
the eigenstructure even when the system is diagonalizable. Such inconsistencies can 
arise because, in the general case, there is not necessarily a global ordering of the 
wave speeds that will define smooth right eigenvectors when wave speeds coincide. 
Furthermore, the eigenstructure may not vary smoothly in a neighborhood of a 
point where strict hyperbolicity fails. 

In actual computations it is rare to encounter points where wavespeeds are 
numerically equal. The real numerical difficulties originate from the approximate 
phase-space solution of the Riemann problem in which we compute the eigenvec- 
tors that will be used to expand UR - UL. In a neighborhood of the eigenvector 
deficiency two of the eigenvectors become nearly parallel. This leads to large 
expansion coefficients in (2.6) that cannot be uniformly bounded analytically in 
terms of UR - UL. The phase-space approximation is not reasonable and its use in 



HIGHER-ORDER GODUNOV METHODS 371 

conjunction with the flux computation (2.9) can potentially introduce instabilities 
into the numerical method. 

The first step in dealing with eigenvector deficiencies in the algorithm is to detect 
them. The detection algorithm is based on a pairwise criterion that estimates 
whether or not it is possible for two of the wave speeds to coincide in the vicinity 
of the phase-space solution of the Riemann problem. Specifically, if 

(2.10) 

then we assume that 1; and I$,-may be involved in an eigenvector deficiency and 
we apply the modifications discussed below. In all of the computations presented in 
this paper we have used c = 0.1. 

When we detect that two wave speeds may coalesce we only modify the treatment 
of the two particular wave families involved; the remaining wave families are 
treated in the same manner as before. When more than two speeds are involved the 
requisite changes are a natural of extension of the procedure; consequently, we 
discuss only the two-mode case. In particular, we assume that the eigenvalues 
2; and E-k satisfy (2.10). As before, we assume that the reference state is UL. The 
modification to the flux computation is motivated by the assumption that (2.10) is 
satisfied because we are near an eigenvector deficiency so that K, and 8, are nearly 
parallel. This leads to ill-conditioning of the matrix associated with the expansion 
(2.6), consequently this expansion cannot be used. Furthermore, we also assume 
that the structure coefficients IC,~ and IC,~ are not reliable. 

The actual modifications to the flux computation depend on whether the eigen- 
vector deficiency is associated with a change in the sign of the wave speeds during 
the transition from UL to UR. To this end we let 

and 

A ^E,“” = max(l:, A/“, I,;, 2:). 

If 1”&’ and J.2 are of the same sign, then we assume that the deficiency is not 
associated with a transonic wave. In this case we collapse E,B, + cl,,,& into a single 
jump by defining 

& = 
or,& + cl, R, 

,lcl,J+ a,R,I, ; ~,r?l= Ibm+ k?JLlI 

and define the flux 

P( UL, UR) = F( UL) + min(X,m, 0) &) B,m + C 
k#l,m 

(j: min(X,, 0) dcr) R,, 

(2.11) 
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where X, is a linear function such that 

AJO) = max(AF, 2;) 

and 

This choice of X assumes the wave is maximally compressive, which incorporates 
a judicious amount of additional dissipation because of the Engquist-Osher 
formalism. Note that this differs from simple upwinding for the case in which 
&J, < 0. 

The only case that remains is when Ami” and Amax are of opposite signs. When this 
occurs, we replace the integral correction term by a dissipative term similar to that 
which is incorporated into Rusanov’s scheme [19]. More precisely, in this case the 
numerical flux is 

FS(UL, UR)=F(UL)-~v&,&,+~~~(j~min(~,,O)d~)&, (2.12) 

where v=max(lnFI, [nil, 1171, I1El). 

3. HIGHER ORDER CONSIDERATIONS 

If we use the numerical flux defined by (2.9) along with the modifications for 
non-strict hyperbolicity (2.11) and (2.12) to replace the Godunov flux in (2.2), we 
would have a formally first-order numerical approximation to the system of conser- 
vation laws (2.1). Our goal in this section is to construct a higher order Godunov 
method that is suitable for general systems of conservation laws. Our basic 
approach follows the development given by Colella [20] for systems satisfying the 
Lax hypotheses. Although we will give a complete description of the algorithm, our 
discussion will focus on the modifications required for general systems. Roughly 
speaking, the basis for the higher order method is the observation that if the left 
and right states used to compute the flux Fj+ ,,z were second-order approximations 
to U at xj+l/2, t” + 112 then the difference scheme defined by (2.2) would be a for- 
mally second-order aiproximation. The procedure used to compute these second- 
order approximations is a two step process. First, we construct a linear approxima- 
tion to U at time t” within each grid cell. The linear approximation is monotonized 
to prevent oscillations from being introduced near discontinuities in the solution. 
The quasilinear form of the equation is then used to extrapolate to cell interfaces 
at p+ 112 

We begin by describing the reconstruction process, which defines a linear profile 
for U within each grid cell. This approximation preserves cell averages UJ! so we 
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need only to compute an approximation to the slope. We define a monotonized, 
centered-difference approximation 

cl,aJ 
Ax - ax .r = .y,’ 

To calculate AU,, we first define the expansions 

(3.1) 

(3.2) 

where the rk are the right eigenvectors of DF( Uj). (In the unlikely case of a numeri- 
cal eigenvector deficiency a complete set of right eigenvectors is defined by setting 
to zero off-diagonal terms in the Jordan form of the matrix; however, the entire 
jump corresponding to the nontrivial Jordan block will be treated as a single jump 
so that this treatment of the deficient case is solely a matter of implementation 
convenience.) The basic algorithm used by Colella [20] then defines 

AU=xctkrk, (3.3) 

where 

ctk = min(lGl, rl& I+$) x sign(G) if cc;cr:>O 
0, otherwise. 

This form of “limiting” the slopes with y = 2 is adequate for strictly hyperbolic 
systems that are genuinely nonlinear; however, additional limiting is required near 
local linear degeneracies and when eigenvector deficiencies are detected among 
the rk. 

A sufficient modification when a local linear degeneracy is detected is to set y = 1 
in (3.3). The reduction of y has the effect of adding additional dissipation in the 
vicinity of the shock for composite shock-rarefaction waves. This additional dissipa- 
tion is needed to ensure that the shock does not become too sharp and thereby 
produce a violation of the Oleinik-Liu entropy condition. (See Bell and Shubin 
[21]) for a discussion of a scalar example where this type of modification is 
required to obtain entropy satisfying shock waves.) Local linear degeneracies are 
detected using the structural coefficients rck,, j = ((VA,) . r,), (where the j subscript 
refers to the jth grid cell). In particular, if 

“kk,jKkk.,+l<O or ICkk,jKkk,j- I <O 

then we set y = 1 when limiting “;,,. 
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The numerical difticulties associated with eigenvector deficiencies are con- 
siderably more serious. The issues here are the same as those that arise in the flux 
computation. Near an eigenvector deficiency the right eigenvectors used in the 
expansions in (3.2) become nearly parallel. There is an associated loss of any 
uniform bounds on the CI’ in (3.2) in terms of the jump resulting in unreliable 
expansion coefficients. Eigenvector deficiencies in the slope computation are 
detected using an analog of (2.10); namely, if 

K 

kkl<C c a;IK/k-Kmkl 
k=l 

then we assume that the portion of the jump l/2( q,+, - U,- ,) corresponding to 

a;‘r, + ci;rm (3.4) 

involves an eigenvector deficiency. Again we have set c = 0.1 for all of the computa- 
tions presented here. 

To guarantee that the slope-limiting procedure does not introduce instabilities 
into the computation of left and right states, it is necessary to guarantee that the 
entire jump corresponding to (3.4) is treated as one wave because the individual 
components of the jump are, in general, badly behaved as a result of the ill-condi- 
tioning of the matrix associated with the expansion. More precisely, we want to 
reduce a; and a; by the same multiplicative factor and force the two components 
of the wave to travel at the same speed. If A,,?, < 0 then we simply set both of the 
amplitudes a;’ and a; to zero. If the waves speeds are of the same sign, we define 
an effective wave speed J [,,, = $(A,+ L,,,) to be used in computing left and right 
states for the flux computation. We also limit each component the same amount by 
defining o ,,m=a,,m/a~~, and redefining the limited slopes by setting 

a l.m = mln(o,, w,) a;:,. 

Using these definitions we define (d U), in Eq. (3.1) by 

(3.5) 

We now use the slopes defined by (3.5) to compute time-centered left and right 
states at the cell edges. Values in cell Aj are used to compute Ujn++,$2~L and U,YTl>/22’R. 
The computation is based on a Taylor series expansion about the cell center, using 
the quasilinear form of the equation to replace temporal derivatives of U. For the 
left state we have, to the required order of accuracy, 

U n + 112,L = uy + $ u,, J + q u,. i 
I+ 112 

= Uj, + $ U., ; - $ F.,. , 

=UJ’+[$-$DFJ Uy,j. (3.6) 
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For linear problems, Eq. (3.6) can be used to compute left and right states by 
replacing U, with the approximation (3.1). However, for nonlinear problems we 
modify (3.6) to disregard components in U, corresponding to waves that do not 
propagate towards the cell edge. To eliminate these components we define the 
characteristic projection operators 

p’=RA’R-‘, 

where R is the matrix whose columns are the rk and A * is a diagonal matrix with 
A& = : + 4 sign(&). (For both operators we use a diagonal entry of one for A, = 0.) 
Then, 

We note that the treatment of slopes near eigenvector deficiencies was specifically 
designed to avoid any difficulties arising in the computation of the left and right 
states because of ill-conditioning of DF or the projection operators. 

We now evaluate the numerical flux corresponding to these left and right states 
using the procedures described in Section 2. For the higher order scheme, we 
modify the flux by adding a quadratic artificial viscosity. Thus 

pj+ ,,2 = FS(U;;$=, U;$;xR) - vj+ ,,2( U;, , - U;), (3.7) 

where vj + 1,2 = C maXk(kk, j - I/r, j+ 1, 0). (Once again we set c = 0.1.) The addition of 
this artificial viscosity term adds a dissipation term to prevent the formation of 
steady discontinuities that fail to satisfy the Oleinik-Liu entropy conditions. 
Finally, the numerical fluxes defined by (3.7) are used in the conservative difference 
formula (2.2) to update the cell averages. 

4. NUMERICAL EXAMPLES FOR MODEL PROBLEMS 

In the previous sections we developed the higher order Godunov scheme for 
general hyperbolic systems of conservation laws. In this section we validate the 
method by applying it to two model problems for which analytic solutions are 
known. For each model, we discuss the characteristic structure that is needed for 
the algorithm and present numerical examples. In the next section we apply the 
method to a problem of greater physical interest. 

4.1. Polymer Flood Model 

The first of our model problems is originally due to Keytitz and Kranzer [S] and 
describes the transverse and longitudinal vibrations of a string. This model has the 
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same structure as a simple model for a polymer flood described by Pope [22] 
and analyzed by Isaacson [23]. The phase space for this model contains one or 
more curves along which both the wave speeds coincide and there is an eigen- 
vector deficiency in the linearized coefficient matrix. There are also local linear 
degeneracies in one of the wave modes. 

In our discussion we will use the polymer-flood model. This system describes the 
Row in a porous medium of a two-phase, incompressible fluid consisting of oil, 
water, and polymer. With suitable assumptions about flow geometry and boundary 
conditions the flow equations reduce to a system of two conservation laws with 

Here s is the volume fraction of aqueous phase, c is the concentration of polymer 
in the aqueous phase, and u is the phase velocity of water. The variables c and s 
have values between 0 and 1, and u is a given function of c and S. 

The determination of the characteristic structure of this system is straightforward. 
The matrix of eigenvalues of BF/aU is 

and the matrix of right-eigenvectors is 

R= 
1 av/ac 

c 1 c(aqac) + s(3b, -A,) . 

Note that when 1, = 1, the matrix R is singular indicating that there is an eigen- 
vector deficiency. 

Our numerical method also requires the gradients of the characteristic speeds. 
These are given by 

and 

From the latter equation, it is easy to see that the second eigenvalue is linearly 
degenerate. Furthermore, it is not hard to see that c is the Riemann invariant 
corresponding to 1 i . In fact, c is also invariant on the Hugoniot loci for the first 
wave family. 
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We describe three numerical computations with this model. For these computa- 
tions we used 

u(s, c) = 
s2 

1 
u +gu-s)2 s2 (1 -s)2 

0.35(i+c) ’ 0.35 IN 0.35( f + c) + 0.35 > ’ 

where u, and g are constants representing total flow velocity and gravity. Our first 
example is a gravity-inversion problem in which a heavy fluid is placed above a 
light fluid. We take u, = 0 and g = -1.4. The initial data are c = 0.1 and s = 0.1 for 
x<O and c=O.9 and s=O.95 for x>O. Computational results with 100 and 200 
cells are presented in Figs. 1 and 2, respectively. These results correspond to 100 
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FIG. 1. Polymer flood gravity inversion example using 100 cells. 
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FIG. 2. Polymer flood gravity inversion example using 200 cells. 

and 200 steps, respectively, with At/Ax = 0.25. In addition to plotting c and s versus 
x/t, we also plot the solution in phase space and eigenvalues versus x/t. The 
analytic solution (drawn with solid lines) consists of a shock moving rapidly to the 
left, separated by a constant state from a compound wave consisting of a contact 
discontinuity moving to the left, a transonic rarefaction and a shock moving to the 
right. Just to the right of the contact discontinuity there is a loss of strict hyper- 
bolicity. Note that there is good agreement of both computations to the analytic 
solution and that the solution demonstrates convergence as the mesh is refined. The 
spike in the numerical wave speeds at x/t = 1.1 is a characteristic signature of a 
local linear degeneracy arising because the smeared shock passes through a region 
of phase-space in which the wave speed is higher than the shock-speed. 
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To provide a more difficult test for the numerical method we would like to have 
a stationary eigenvector deficiency. Unfortunately, this does not occur for any 
values of u, and g. To devise such a test we have used a horizontal reservoir (u, = 1 
and g = 0) and performed the computation in a moving frame of reference so that 
both wavespeeds are equal when they are zero. These results for 100 and 200 cells 
(100 and 200 steps, respectively, with At/Ax = 0.5) are shown in Figs. 3 and 4. Here, 
the fluid on the left has c = 0.9 and s = l., while the fluid on the right has c = 0.1 
and s = 0.1. The analytic solution consists of a shock moving to the right, separated 
by a constant state from a compound wave consisting of a sonic contact discon- 
tinuity and a rarefaction moving to the left. Again, the analytic solution is drawn 
in these figures with a solid-line. Note that in this case there is a slight phase shift 
in the numerical solution; however, convergence is still observed. 

I.0 7 I.0 - 
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FIG. 3. Polymer flood on moving grid using 100 cells. 
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FIG. 4. Polymer flood on moving grid using 200 cells. 

In our third numerical example for the polymer flow model, the initial data were 
chosen so that both of the characteristic speeds were equal everywhere. The com- 
putation was performed with 200 grid cells. Cells 2 through 26 were taken to have 
compositions varying smoothly between those in cells 1 and cells 27-200, and to 
have both wavespeeds equal. The numerical results in Fig. 5 (plotted as a con- 
tinuous line) show that the large-time behavior of this problem is distinct from the 
solution to the Riemann problem between the left and right states. Furthermore, 
note that the nonlinearities in the problem have driven the solution off of the 
degeneracy curve, as observed by Isaacson [23]. This supports our assumption in 
the Introduction that the loss of strict hyperbolicity is confined to a region of 
codimension > 1 in space-time. 
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FIG. 5. Polymer flood with data on eigenvector deficiency curve. 

4.2. Complex Burgers’ Equation 

The second model problem is the complex Burgers’ equation described by 
Shearer et al. [24]. Unlike the previous model, this conservation law has a single 
point at which strict hyperbolicity fails. However, the presence of this “umbilic 
point” leads to undercompressive shocks, for which exactly one characteristic inter- 
sects the shock on either side. 

This conservation law can be written in the form 

a2 a22 A--= 
at ax 0, 
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where z is the complex variable 

z=u,+iu2=peiH. 

From this form of the equation, it is easy to see that the conservation law is 
unaffected by conjugation (i.e., reflection about the U, axis), and clockwise or 
counterclockwise rotations of 120”. This conservation law can be written in the 
form (2.1) if we take 

and 

In order to perform the characteristic analysis of this conservation law, let us define 

w= ; . [I 
Then the quasi-linear form of the conservation law for W shows that the equation 
is hyperbolic if and only if the eigenvalues of 

are real. Since A is similar to a symmetric orthogonal matrix it has real eigenvalues 
given by the diagonal entries of the matrix 

and right eigenvectors given by the columns of 

x=[:, ;]-‘[ --Y;; fbns;g. 

In order to find the characteristic directions of the original form of the conservation 
law, we note that 
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Thus the desired characteristic directions are the columns of e e &aax= -cos- sin- 
2 2 

aw [ 1 e 8’ 
sin - cos - 

2 2 

Note that these characteristic directions are orthogonal and undefined at the origin. 
Also note that the gradients of the eigenvalue are easy to compute, 

a2p 2 
- = - ~4~ = ~[COS 8, sin e], 
au P 

but they are undefined at the origin. 
We can use these forms of the characteristic directions to find the Riemann 

invariants (although the Riemann invariants are not used by our numerical 
method). The Riemann invariant corresponding to the positive wavespeed must 
have its gradient in the direction of the first left eigenvector; in other words, 

for some scalar LX It is now easy to see that this Riemann invariant is 

Q = p 3/2 cos $0 = Re (z3j2) 

The other Riemann invariant, corresponding to the negative wavespeed, is 

0 = p312 sin ge = Im(z312). 

The rarefaction curves lie on the level sets of these Riemann invariants, and there- 
fore, asymptote to infinity whenever the sines or cosines approach zero. Since the 
characteristic speeds are proportional to the distance of the points on these level 
sets from the origin, the wave families are not genuinely nonlinear. 

We perform a numerical calculation with this model primarily to investigate the 
behavior of our method on problems containing undercompressive shocks. We 
chose the Riemann problem initial data with left state U= [cos(n/6), sin(x/6)], and 
the right state its negative. The choice of symmetric states leads to a sonic undcr- 
compressive shock which is the most difficult case for the numerical method. The 
analytic solution consists of forward- and backward-moving rarefactions and a 
sonic undercompressive shock. Figure 6 shows the results of our numerical method 
with 100 grid cells. The analytic solution as determined in [24] is drawn with a 
solid line. There is excellent agreement between the analytic and numerical solution. 
Other examples have further corroborated the agreement between the results of our 
numerical method and the analytic construction in [24]. 
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Complex Burger’s equation with sonic undercompressive shock using 100 cells. 

5. BLACK-OIL MODEL 

In our previous numerical examples we examined non-strictly hyperbolic conser- 
vation laws for which there are known solutions to the Riemann problems. In this 
section we apply the methodology to a problem of practical interest, namely, the 
black-oil model for petroleum reservoir simulation. The black-oil model is the 
standard model used in petroleum engineering to simulate primary and secondary 
oil recovery processes. It is able to model a variety of effects including fluid com- 
pressibility and the transfer of chemical components between phases. Unfortunately, 
the black-oil model is too intricate to discuss fully in this paper. We will give only 
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a brief synopsis of the equations. The details of the model and an analysis of its 
structure are described in [25]. 

Analytic Structure 

The black-oil model describes a three component fluid system (oil, gas, and 
water) and may contain up to three fluid phases (liquid, vapor, and aqua). The 
other dependent variable used to describe the system is the pressure. Because of the 
transfer of chemical components between phases, it is possible that for certain com- 
positions and pressures a phase may not be formed even though all three chemical 
components are present. When all three phases are present the fluid is said to be 
saturated; when one of the phases is missing the fluid is said to be undersaturated. 

The flow equations describing the system, which express conservation of mass for 
each chemical component, take the form 

Z+V.F(n, p, v)=O, 

where n is the vector of component densities, p is the pressure, v is the vector of 
phase velocities, and 4 is the porosity of the porous medium. Darcy’s law specifies 
u = v(p, Vp, n, s), where s is the vector of phase saturations which are expressed as 
functions of p and n. The system is closed by an’ equation of state for the fluid 
mixture 

V(p,n)=O. (5.2) 

The system (5.1) and (5.2) have a number of properties that are important in the 
design of numerical solution algorithms. At the boundaries of regions where the 
fluid changes from being saturated to being undersaturated the flux F is continuous 
but its derivative is not. Also, the system (5.1)-(5.2) is of indeterminate type; it 
exhibits both hyperbolic and parabolic behavior. Trangenstein and Bell [25] 
define a decomposition of the system that separates the parabolic and hyperbolic 
character of the flow. In particular they define a parabolic pressure equation of 
the form 

aP adt-V.(bVp)=c(p,n,Vp), (5.3) 

where the coefficients a and b are functions of n and p. In addition to determining 
p, the result of the pressure equation is also used to define a total fluid velocity u,. 
Then, (5.1) can be rewritten in the form 

and x + v . F(n, p, 6) = 0, (5.4) 

where 6 = C(p, v,, n, S) is the vector of phase velocities expressed in terms of total 
velocity. If we treat p and v, as known functions of x, t then (5.4) is hyperbolic. 

Next we summarize the resuls of the characteristic analysis of (5.4) from [25]. 
The actual form of F (and F) changes at phase boundaries. For this reason the 

58l’R2/2-IO 
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characteristic structure of (5.4) changes depending on whether the fluid is saturated 
or undersaturated. 

In the saturated case, the characteristic speeds are of two types. One wavespeed 
is identically zero. Its Riemann invariant is related to the error in (5.2) introduced 
by decoupling the flow equations; ideally, this wave carries no information. The 
remaining characteristic speeds are eigenvalues of ~%/la.s. These wavespeeds exhibit 
several forms of difficult behavior. Two wavespeeds can become equal at isolated 
points or along curves extending to the boundary of the saturated region. Each 
wave family also exhibits local linear degeneracies. Further, there is no consistent 
global ordering of these two eigenvalues that gives a smooth family of eigenvectors. 

In the undersaturated case, the characteristic speeds are of three types. There is 
a zero wavespeed carrying essentially no information, just as in the saturated case. 
The second wavespeed is the derivative of the velocity of the aqueous phase with 
respect to its saturation. The wave curves for this family contain points of local 
linear degeneracy. The third wavespeed is a weighted average of the particle 
velocities in the existing phases, and is essentially linearly degenerate. (The particle 
velocity for a phase i is uJsi.) Thus the structure of the undersaturated case is 
similar to the polymer flood model. In particular, there is an eigenvector deficiency 
whenever the second and third eigenvalues are equal. 

A number of remarks regarding the characteristic structure are in order. First, the 
discontinuity in the derivative of the flux at phase boundaries leads to a discon- 
tinuity in both the characteristic speeds and the associated right eigenvectors. Also, 
because of the complexity of the formulae for the eigenvalues, we have not 
attempted to analytically compute the structure coefficients required by our numeri- 
cal method. In the numerical resuls below, the structural coefficients have been 
computed by finite differences from analytic calculations of the characteristic speeds 
and directions. 

Numerical Considerations 

Equations (5.3) and (5.4) form the basis for a numerical method in which we first 
solve (5.3) to determine p and uI, and then use these functions to solve (5.4) for n. 
In solving (5.3) we add an additional source term to correct for errors introduced 
by the sequential solution scheme. The additional complexity of the black-oil model 
necessitates additional modifications to the Godunov methodology. First, the 
quasilinear form of the equation used to predict left and right states for the flux 
computation contains additional terms arising from the dependence of the flux on 
pressure and total velocity. Precisely, the quasilinear form (in one space dimension) 
is given by 
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The terms appearing on the right-hand side of this equation are source terms that 
must be included in (3.6) to obtain second-order accuracy. 

The other modification to the Godunov methodology is required because of the 
discontinuity of the eigenstructure. At interfaces of cells containing different phases, 
the discontinuity in the flux derivatives means that the phase-space construction for 
weak waves in Section 2 is invalid for part of the jump. This can be alleviated by 
addition of a quadratic viscosity to the flux based on the maximum saturation 
jump. In particular, we modify the viscosity term in (3.7) to 

where 

vi+ 1,~ = max(v,+ l/2, 0.2Ax A$+ &At), 

As?+ ,,,2 = max, Isj,iwsj+ 1.~1 if max, ~s~,~--s~+,,~( >0.2 
0 otherwise. 

Computational Examples 

We describe two black-oil computational examples. The explicit functional forms 
used for the function defining the model are too complex to be presented here; the 
computations were all performed using the data in [25]. The first example is a 
l-dimensional gravity inversion problem. The porous medium is 100 ft in length 
(vertical) and is capped with no flow boundary conditions at each end. The lower 
third is initially filled with pure gas, the middle third with pure oil, and the upper 
third with pure water. The pressure throughout the medium is initially 2000 psi. 
When allowed to flow, the fluids begin to invert because of gravity and to mix 
because of mass transfer. The mass transfer effects are quite substantial. A large 
fraction of the gas component is absorbed into the liquid phase resulting in a 
pressure drop of more than 30% in the first 200 days of the simulation. In Fig. 7, 8, 
and 9 we plot computation results at 120 days with 60, 120, and 240 cells. The left 
side of the plot corresponds to the bottom of the domain. In each case we plot the 
saturations and the eigenvalues. In the saturation plot, the area below the lower 
curve represents, the vapor phase saturation, the area between the lower and upper 
curve is the liquid saturation, and the area above the upper curve is the aqueous 
saturation. The three different grids serve to illustrate the resulution capability of 
the method and to demonstrate numerical convergence of the solution. In the two 
coarser grids we identify the values of the solutions at the cell centers with plus 
symbols; for clarity, we omit these symbols in the fine grid calculation. Examining 
the results more closely, we see that the solution at 120 days consists of two com- 
pound waves emanating from the discontinuities in the original data. Each com- 
pound wave consists of a shock-rarefaction pattern. These two waves demonstrate 
somewhat different phenomena in that there is a phase change across the two 
shocks in the lower wave but not in the upper wave. The wave speed plots for these 
computations provide only qualitative information about the wave because they are 
constantly being modulated by pressure effects. In Figs. 7-9, we do observe that 
each of the shock waves shows the typical signature of local linear degeneracy, i.e., 
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FIG. 10. Black-oil gravity inversion example with 60 cells at roughly 180 days. 
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a local spike in the wave speed. Furthermore, we can observe points where there 
is a loss of strict hyperbolicity as the wave speeds cross. 

The next plots, Figs. 10, 11, and 12, show the interaction of the waves seen in the 
earlier figures. These plots show the solution at roughly 180 days for each of the 
three grids. Again, the refinements show convergence of the method. The solution 
is considerably more complex at this stage. A number of points of local linear 
degeneracy and loss of strict hyperbolicity are apparent. At x = 0.05 we see that the 
left-most front at 120 days has reached the bottom of the domain and has reflected 
back into the domain. Another feature of interest is the gas bubble that forms at 
the leading edge of the downward moving water front at x=0.55. 

The next example we consider is a 2-dimensional problem that is more typical of 
engineering computations. In this case the reservoir is 500 ft long and 50 ft thick 
with a uniform permeability of 100 md. The reservoir is initially filled with an 
undersaturated liquid phase containing oil and gas in hydrostatic equilibrium with 
mean pressure of 1800 psi. We inject pure water in hydrostatic equilibrium at mean 
pressure 2000 psi along the entire left face of the reservoir. Production occurs along 
the entire right face with bottom hole pressure of 1600 psi. The 2-dimensional 
scheme is a natural extension of the methods described earlier and the unsplit 
methodology developed by Colella [20]. For this case we plot, in Figs. 13-15, the 
component densities on 20 x 10, 40 x 20, and 80 x 40 grids after roughly one year of 

WATER DENSITY 

GRS DENSITY 

011 DENSITY 

FIG. 13. Black-oil water-flood example on 20 x 10 grid at 360 days. 
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WRTEK DENSITY 

FIG. 14. Black-oil water-flood example on 40 x 20 grid at 360 days. 

WATER DENSITY 

CHS DENSITY 

FIG. 15. Black-oil water-flood example on 80 x 40 grid at 360 days. 
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injection. The vertical dimension on the plots has been expanded by a factor of 2.5. 
We note that the aspect ratio of the grid cells is 5 to 1 for all of the computations. 
The width of the initial front is only a couple of cells wide on each of the grids. The 
flow also contains a number of secondary features that are quite difficult to resolve 
accurately. Along the top of the reservoir there is a liquid hydrocarbon “film” that 
is bypassed by the heavier injected water. Another interesting feature is the contact 
discontinuity seen in the leftmost contours of the gas density. The contact, which 
is smeared over 34 cells, is completely resolved only on the finest grid. To the left 
of this contact all of the gas is being swept from the liquid phase by the injected 
water. 

6. CONCLUSIONS 

Over the past few years we have seen the development of high-resolution schemes 
for hyperbolic conservation laws achieve an important milestone. The basic 
algorithm design principles needed to construct schemes for systems such as gas 
dynamics in which all wave modes are either genuinely nonlinear or linearly 
degenerate are now well understood. There are a number of methods that have 
been developed using these principles and they have all proven to be quite success- 
ful. One of the next major challenges facing algorithm designers is the extension of 
these methodologies to more general systems of equations. In this paper we have 
presented a prototype methodology for performing this extension. The method is 
based on an approximation of the phase-space solution of the Riemann problem for 
strictly hyperbolic systems, plus a generalization of the Engquist-Osher flux. We 
have also presented the necessary constructions that are needed to detect loss of 
strict hyperbolicity along with modifications co the method to handle it. Tests on 
simple model problems with known exact solutions have indicated good perfor- 
mance of the method. The method has also been applied to more realistic problems 
arising in a model for multiphase flow in porous media and has performed well for 
these more difficult problems. However, it should be emphasized that we do not 
consider the methods developed here to be the final resolution of the problems 
associated with solving general systems of conservation laws. On the contrary, the 
methodology that has been presented here is only an initial step in that direction. 
We believe that we have identified some of the key issues that must be addressed 
and have presented one option for dealing with them. Several variations, some 
of which were suggested in the text, are posssible and may be necessary in other 
contexts. 
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